2022 |
T. Killian, M. Ghassemi, S. Joshi Counterfactually Guided Policy Transfer in Clinical Settings. Conference on Health, Inference, and Learning (PMLR, to Appear).
|
2022 |
S. Joshi*, S. Parbhoo*, F. Doshi-Velez Generalizing Off-Policy Evaluation From a Causal Perspective For Sequential Decision-Making. Preprint 2022.
|
2022 |
M. Pawelczyk, C. Agarwal, S. Joshi, S. Upadhyay, H. Lakkaraju Exploring Counterfactual Explanations through the lens of Adversarial Examples: A Theoretical and Empirical Analysis. AISTATS 2022.
|
2021 |
S. Joshi*, S. Parbhoo*, F. Doshi-Velez Pre-emptive learning-to-defer for sequential medical decision-making under uncertainty. IMLH@ICML, Preprint 2021.
|
2021 |
S. Upadhyay*, S. Joshi*, H. Lakkaraju Towards Robust and Reliable Algorithmic Recourse. NeurIPS 2021.
|
2021 |
H. Singh, S Joshi, F. Doshi-Velez, H. Lakkaraju Learning Under Adversarial and Interventional Shifts. Preprint 2021.
|
2021 |
S. Gowda, S. Joshi, H. Zhang, M. Ghassemi Pulling Up by the Causal Bootstraps: Causal Data Augmentation for Pre-training Debiasing. ACM CIKM, 2021.
|
2020 |
H. Zhang, N. Dullerud, L. Seyyed-Kalantari, Q. Morris, S. Joshi, M. Ghassemi An empirical framework for domain generalization in clinical settings. ACM CHIL, 2021.
|
2020 |
V. Cheng, V. M. Suriyakumar, N. Dullerud, S. Joshi, M. Ghassemi Can You Fake It Until You Make It? Impacts of Differentially Private Synthetic Data on Downstream Classification Fairness. ACM FAccT, 2021.
|
2020 |
M. D. McCradden, S. Joshi, J. A. Anderson, M. Mazwi, A. Goldenberg, R. Z. Shaul Patient safety and quality improvement: Ethical principles for a regulatory approach to bias in healthcare machine learning. JAMIA, 2020.
|
2020 |
S. Wang*, S. Yi*, S. Joshi, M. Ghassemi Confounding Feature Acquisition for Causal Effect Estimation. ML4H@NeurIPS 2020 Proceedings (to appear).
|
2020 |
I. Chen*, S. Joshi*, M. Ghassemi, R. Ranganath Probabilistic Machine Learning for Healthcare. Annual Review of Biomedical Data Science 2020.
|
2020 |
I. Chen, E. Pierson, S. Rose, S. Joshi, M. Ghassemi Ethical Machine Learning in Health Care. Annual Review of Biomedical Data Science 2020.
|
2020 |
F. Rudzicz, S. Joshi Explainable AI for the Operating Theater. Springer 2020.
|
2020 |
S. Tonekaboni*, S. Joshi*, K. Campbell, D. Duvenaud, A. Goldenberg What went wrong and when? Instance-wise Feature Importance for Time-series Models. NeurIPS 2020.
|
2020 |
A. Yeung, S. Joshi, J. Williams, F. Rudzicz Sequential Explanations with Mental Model-Based Policies. Workshop on Human Interpretability in Machine Learning @ICML 2020 (Spotlight).
|
2020 |
M. McCradden, S. Joshi, J. Anderson, M. Mazwi, A. Goldenberg, R. Shaul Patient safety and quality improvement: Ethical principles for a regulatory approach to bias in healthcare machine learning. JAMIA 2020.
|
2020 |
M. McCradden, S. Joshi, M. Mazwi, J. Anderson Ethical limitations of algorithmic fairness solutions in health care machine learning. LDH 2020, AIES 2020, FairML for Health @NeurIPS 2020.
|
2020 |
I. Chen, S. Joshi, M. Ghassemi Treating health disparities with artificial intelligence. Nature Medicine 2020.
|
2019 |
S. Tonekaboni, S. Joshi, A. Goldenberg Individualized Feature Importance for Time Series Risk Prediction Models. NeurIPS ML4H Workshop 2019.
|
2019 |
S. Yi, S. Wang, S. Joshi, M. Ghassemi Fair and Robust Treatment Effect Estimates: Estimation Under Treatment and Outcome Disparity with Deep Neural Models. NeurIPS ML4H and Fair ML for Health Workshop 2019.
|
2019 |
M. McCradden, S. Tonekaboni, S. Joshi, A. Goldenberg Five Pillars of Explainable Clinical Machine Learning. Stanford Frontier of AI-Assisted Care (FAC) Scientific Symposium.
|
2019 |
S. Tonekaboni, S. Joshi, M. McCradden, A. Goldenberg What Clinicians Want: Contextualizing Explainable Machine Learning for Clinical End Use. MLHC 2019.
|
2019 |
S. Joshi, O. Koyejo, W. Vijitbenjaronk, B. Kim, J. Ghosh Towards Realistic Individual Recourse and Actionable Explanations in Black-Box Decision Making Systems. SafeML Workshop @ICLR 2019.
|
2018 |
S. Joshi, R. Khanna, J. Ghosh Co-regularized Monotone Retargeting for Semi-supervised LeTOR. SDM 2018.
|
2018 |
S. Joshi, S. Gunasekar, D. Sontag J. Ghosh Identifiable Phenotyping using Constrained Non-Negative Matrix Factorization. MLHC 2018.
|
2016 |
S. Joshi, O. Koyejo, M. Reid, J. Ghosh Rényi divergence minimization based co-regularized multiview clustering. ECML-PKDD Journal track 2016.
|
2016 |
S. Joshi, O. Koyejo, J. Ghosh Simultaneous Prognosis of Multiple Chronic Conditions from Heterogeneous EHR Data. ICHI 2016.
|
2014 |
S. Joshi, O. Koyejo, J. Ghosh Multiview Clustering via Constrained Bayesian Inference. Workshop on Divergence Methods for Probabilistic Inference @ICML 2014.
|