publications

publications by categories in reversed chronological order.

2024

  1. safecrl.png
    Towards Safe Policy Learning under Partial Identifiability: A Causal Approach
    \textbfShalmali Joshi*, Junzhe Zhang*, and Elias Bareinboim
    \textbfThe 38th Annual AAAI Conference on Artificial Intelligence (Oral), 2024

2023

  1. What’s fair is… fair? Presenting JustEFAB, an ethical framework for operationalizing medical ethics and social justice in the integration of clinical machine learning: JustEFAB
    Melissa Mccradden, Oluwadara Odusi, Shalmali Joshi, Ismail Akrout, Kagiso Ndlovu, Ben Glocker, Gabriel Maicas, Xiaoxuan Liu, Mjaye Mazwi, Tee Garnett, and 1 more author
    In Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency, 2023
  2. A normative framework for artificial intelligence as a sociotechnical system in healthcare
    Melissa D McCradden, Shalmali Joshi, James A Anderson, and Alex John London
    Patterns, 2023
  3. Making machine learning matter to clinicians: model actionability in medical decision-making
    Daniel E Ehrmann, Shalmali Joshi, Sebastian D Goodfellow, Mjaye L Mazwi, and Danny Eytan
    NPJ Digital Medicine, 2023
  4. why_model_fail.png
    Why did the Model Fail?: Attributing Model Performance Changes to Distribution Shifts
    Haoran Zhang, Harvineet Singh, Marzyeh Ghassemi, and Shalmali Joshi
    International Conference on Machine Learning (to appear), 2023
  5. sltd.png
    Learning-to-defer for sequential medical decision-making under uncertainty
    Shalmali Joshi*, Sonali Parbhoo*, and Finale Doshi-Velez
    TMLR, Previous version at ICML Workshop on Interpretable Machine Learning in Healthcare, 2023

2022

  1. Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis
    Martin Pawelczyk, Chirag Agarwal, Shalmali Joshi, Sohini Upadhyay, and Himabindu Lakkaraju
    25th International Conference on Artificial Intelligence and Statistics and ICML Workshop on Algorithmic Recourse, 2022
  2. causal_ope.png
    Generalizing Off-Policy Evaluation From a Causal Perspective For Sequential Decision-Making
    Shalmali Joshi*, Sonali Parbhoo*, and Finale Doshi-Velez
    arXiv preprint at arXiv:2201.08262, Previous version appeared at ICML Workshop on Neglected Assumptions in Causal Inference, 2022
  3. ope_aies.png
    Towards Robust Off-Policy Evaluation via Human Inputs
    Harvineet Singh, Shalmali Joshi, Finale Doshi-Velez, and Himabindu Lakkaraju
    In AI Ethics and Society, 2022
  4. ctrl.png
    Counterfactually Guided Policy Transfer in Clinical Settings
    Taylor Killian, Marzyeh Ghassemi, and Shalmali Joshi
    In Proceedings of the Conference on Health, Inference, and Learning (CHIL), Shorter version at Inductive Biases, Invariances and Generalization in RL (BIG) at ICML, 2022

2021

  1. ethical_ml.png
    Ethical Machine Learning in Healthcare
    Irene Y. Chen, Emma Pierson, Sherri Rose, Shalmali Joshi, Kadija Ferryman, and Marzyeh Ghassemi
    Annual Review of Biomedical Data Science, 2021
  2. causal_bootstrapping.png
    Pulling Up by the Causal Bootstraps: Causal Data Augmentation for Pre-training Debiasing
    Sindhu C M Gowda, Shalmali Joshi, Haoran Zhang, and Marzyeh Ghassemi
    30th ACM International Conference on Information and Knowledge Management, 2021
  3. can_you_fake_it.png
    Can You Fake It Until You Make It? Impacts of Differentially Private Synthetic Data on Downstream Classification Fairness
    Victoria Cheng, Vinith M Suriyakumar, Natalie Dullerud, Shalmali Joshi, and Marzyeh Ghassemi
    In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, 2021
  4. robust_recourse.png
    Towards Robust and Reliable Algorithmic Recourse
    Sohini Upadhyay*, Shalmali Joshi*, and Himabindu Lakkaraju
    Neural Information Processing Systems and ICML Workshop on Algorithmic Recourse, 2021
  5. empirical_dg.png
    An empirical framework for domain generalization in clinical settings
    Haoran Zhang, Natalie Dullerud, Laleh Seyyed-Kalantari, Quaid Morris, Shalmali Joshi, and Marzyeh Ghassemi
    In Proceedings of the Conference on Health, Inference, and Learning, 2021

2020

  1. probml_pic.png
    Probabilistic machine learning for healthcare
    Irene Y* Chen, Shalmali Joshi*, Marzyeh Ghassemi, and Rajesh Ranganath
    Annual Review of Biomedical Data Science, 2020
  2. tsx.png
    What went wrong and when? Instance-wise Feature Importance for time-series Models
    Sana Tonekaboni*, Shalmali Joshi*, Kieran Campbell, David Duvenaud, and Anna Goldenberg
    In NeuRIPS, 2020
  3. Sequential Explanations with Mental Model-Based Policies
    Arnold Yeung, Shalmali Joshi, Joseph Williams, and Frank Rudzicz
    In Workshop on Human Interpretability in Machine Learning at ICML, 2020
  4. confounding_feature_acq.png
    Confounding Feature Acquisition for Causal Effect Estimation
    Shirly Wang, Seung Eun Yi, Shalmali Joshi, and Marzyeh Ghassemi
    In Machine Learning for Health, 2020
  5. Patient safety and quality improvement: Ethical principles for a regulatory approach to bias in healthcare machine learning
    Melissa D McCradden, Shalmali Joshi, James A Anderson, Mjaye Mazwi, Anna Goldenberg, and Randi Zlotnik Shaul
    In Journal of the American Medical Informatics Association, 2020
  6. Ethical limitations of algorithmic fairness solutions in healthcare machine learning
    Melissa McCradden, Shalmali Joshi, James Anderson, and Mjaye Mazwi
    In Lancet Digital Health, 2020
  7. When your only tool is a hammer: ethical limitations of computational fairness solutions in healthcare machine learning (Oral)
    Melissa McCradden, Shalmali Joshi, James Anderson, and Mjaye Mazwi
    In Lancet Digital Health, AAAI Conference on AI Ethics and Society (AIES), Fair ML for Health Workshop at NeurIPS, 2020
  8. Treating Health Disparities with Artificial Intelligence
    Irene Chen, Shalmali Joshi, and Marzyeh Ghassemi
    In Nature Medicine, 2020

2019

  1. Fair and Robust Treatment Effect Estimates: Estimation Under Treatment and Outcome Disparity with Deep Neural Models
    Seungeun Yi*, Shirly Wang*, Shalmali Joshi, and Marzyeh Ghassemi
    In Fair ML for Health Workshop at NeurIPS, 2019
  2. Individualized Feature Importance for Time Series Risk Prediction Models
    Sana Tonekaboni, Shalmali Joshi, and Anna Goldenberg
    In Machine Learning for Health Workshop at NeurIPS, 2019
  3. what_clinicians_want.png
    What Clinicians Want: Contextualizing Explainable Machine Learning for Clinical End Use
    Shalmali Joshi*, Sana Tonekaboni*, Melissa McCradden, and Anna Goldenberg
    In Machine Learning for Healthcare (MLHC), 2019
  4. revise.png
    Towards Realistic Individual Recourse and Actionable Explanations in Black-Box Decision Making Systems
    Shalmali Joshi, Oluwasanmi Koyejo, Been Kim, Warut Vijitbenjaronk, and Joydeep Ghosh
    In SafeML Workshop at the International Conference on Learning Representations (ICLR), 2019

2018

  1. xgems.png
    xGEMS: Generating Exemplars to Explain Black-Box Models
    Shalmali Joshi, Oluwasanmi Koyejo, Been Kim, and Joydeep Ghosh
    In , 2018
  2. mrcore.png
    Co-regularized Monotone Regtargeting for Semi-supervised LeTOR
    Shalmali Joshi, Rajiv Khanna, and Joydeep Ghosh
    In Siam International Conference on Data Mining (SDM), 2018

2016

  1. nmf.png
    Identifiable Phenotyping using Constrained Non-Negative Matrix Factorization
    Shalmali Joshi, Suriya Gunasekar, David Sontag, and Joydeep Ghosh
    In Machine Learning for Healthcare Conference (MLHC), 2016
  2. mvc_simplex.png
    Rényi divergence minimization based co-regularized multiview clustering
    Shalmali Joshi, Joydeep Ghosh, Mark Reid, and Oluwasanmi Koyejo
    Machine Learning, 2016